Chao YUE
2013-08-07 12:44:26 UTC
Dear all,
I have a hierachical nested python dictionaries with the end of the branch
as either pandas dataframe, or np.ndarray or list or plain scalars.
let's say the different levels of keys are:
1st level: ['top1', 'top2', 'top3']
2nd level: ['mid1','mid2','mid3']
3rd level: ['bot1','bot2','bot3','bot4']
I think I am looking for some data strucuture that allow easy retrieving of
the data at different levels as dictionaries (I cannot think out something
better yet).
for example: data.ix['top1',:,'bot1'] will have keys only at the middle
levels.
I have a quick look of pytables document but not very sure, should I use
pytables for this purpose?
thanks a lot for any idea.
cheers,
Chao
I have a hierachical nested python dictionaries with the end of the branch
as either pandas dataframe, or np.ndarray or list or plain scalars.
let's say the different levels of keys are:
1st level: ['top1', 'top2', 'top3']
2nd level: ['mid1','mid2','mid3']
3rd level: ['bot1','bot2','bot3','bot4']
I think I am looking for some data strucuture that allow easy retrieving of
the data at different levels as dictionaries (I cannot think out something
better yet).
for example: data.ix['top1',:,'bot1'] will have keys only at the middle
levels.
I have a quick look of pytables document but not very sure, should I use
pytables for this purpose?
thanks a lot for any idea.
cheers,
Chao
--
***********************************************************************************
Chao YUE
Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL)
UMR 1572 CEA-CNRS-UVSQ
Batiment 712 - Pe 119
91191 GIF Sur YVETTE Cedex
Tel: (33) 01 69 08 29 02; Fax:01.69.08.77.16
************************************************************************************
***********************************************************************************
Chao YUE
Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL)
UMR 1572 CEA-CNRS-UVSQ
Batiment 712 - Pe 119
91191 GIF Sur YVETTE Cedex
Tel: (33) 01 69 08 29 02; Fax:01.69.08.77.16
************************************************************************************